<tt id="6hsgl"><pre id="6hsgl"><pre id="6hsgl"></pre></pre></tt>
          <nav id="6hsgl"><th id="6hsgl"></th></nav>
          国产免费网站看v片元遮挡,一亚洲一区二区中文字幕,波多野结衣一区二区免费视频,天天色综网,久久综合给合久久狠狠狠,男人的天堂av一二三区,午夜福利看片在线观看,亚洲中文字幕在线无码一区二区
          Global EditionASIA 中文雙語Fran?ais
          Opinion
          Home / Opinion / Global Lens

          Proper data sharing essential for language models

          By Madeline Carr | China Daily | Updated: 2025-02-11 07:17
          Share
          Share - WeChat
          SONG CHEN/CHINA DAILY

          The potential for artificial intelligence to improve lives has captured the attention of governments across the world. Straining budgets, growing inefficiencies, and the rising costs of healthcare, housing, and other social services mean that the promise of AI-driven systems is becoming increasingly attractive. There are a range of challenges involved in doing this including sharing sensitive or proprietary data sets, ensuring the outcomes truly benefit human beings, and designing policies that can make all of this possible.

          One lesson that we've taken from the past is that the country that develops or leads in emerging technologies inevitably does so through its own vision of what is "good", "preferable" and "beneficial" — particularly for its own political, commercial and civil benefits. Views on what "good" looks like can, and usually do, vary quite widely but the decisions that dominant states or private actors take on technologies have a huge impact in terms of how those technologies are used by others.

          Sharing data sets for training AI large language models (LLMs) is a particularly powerful and yet sensitive issue. Imagine the potential for medical researchers if they had unrestricted access to immediate and dynamically updated data on diabetes through medical implants. These data could include a range of information, from geography, activity levels, diets, environmental factors, medical treatment, and more providing an incredibly comprehensive overview of a disease that impacts more than half a billion people worldwide. AI analysis of those data sets could bring benefits in a fraction of the time otherwise required.

          But such data are increasingly locked within commercial arrangements focused on extracting profits. This raises alarm bells for governments that feel their own indigenous data are at risk of predatory or monopolistic AI companies based elsewhere. Connections between notions of sovereign control over data for those with "low token" languages (those not widely spoken) are growing.

          There is a very live discussion underway in Latin America, for example, on the absorption of indigenous languages into foreign owned and operated LLMs. The European Union cloud ecosystem, critical to the increased computer processing required by advanced AI systems, is still dominated by US monopolies. Consideration needs to be given to how a small number of (often monopolistic) companies can and should be governed globally through a system within which they are able to influence the industrial, trade and even foreign policies of state actors.

          Focusing on profit generation and efficiency when it comes to technology innovation has only taken us so far. One could argue (and many do) that technology motivated by these twin forces has delivered huge benefits to society over the last century. But we have also observed that there is a limit to how effectively those benefits trickle down if they are not carefully governed.

          Indeed, one of the harsh truths that we have confronted in many places is that there are no market drivers for many of the outcomes that we have hoped would eventuate from emerging technologies. Cybersecurity is an apt example. We've seen the growth of two symbiotic sectors, both hugely profitable.

          The first sector releases insecure software and hardware into the market with insufficient investment in security. And the second sector comes along later, finding vulnerabilities and problems and reporting them. Both of these sectors are hugely profitable and the product of market forces. Both are reliant on the other not changing. And neither delivers security to the level that we need it or when we need it. We should take note of this and make sure AI systems and services do not replicate this model.

          Markets have not and will not deliver human-focused outcomes or public goods by themselves. To ensure they do so, we require policy initiatives, planning, regulation, and healthy discussions on what is and what is not desirable for human beings. Technological innovation develops to fulfill the wishes and needs of those in a position to direct it. That's why it is so important that there is a broad range of inputs into that problem definition process. Mark Zuckerberg's recent announcement that Meta will dismantle its DEI program is a retrograde step away from ensuring that we have a diversity of perspectives in these powerful organizations.

          Despite the incredibly exciting, dynamic period of technological innovation that we are in the midst of, one thing that has lagged behind in many places is any kind of innovation in the processes and practices needed to translate technological innovations into positive outcomes. Indeed, policymaking is generally carried out today in much the same way that it was 100 years ago. Regulating technologies to extract benefits while minimizing the negative consequences of technologies is a practice in its infancy.

          Furthermore, it's not a field in which we've particularly been able to accommodate failure. Experimentation in policymaking on technology remains challenging for most governments and when something is attempted but found to be ineffective, winding that policy back or reversing course is often perceived as a "policy failure". This is in stark contrast to the "fail fast" culture that dominates those tech companies we are attempting to govern. Human rights and societal benefits have too frequently been neglected out of fear that "regulation will stifle innovation "but this has set us up for decades of very poor protection for any element of society apart from the tech sector itself.

          China perhaps has been the most innovative in this field with very dynamic and flexible approaches to tech policy. The international data port established at Lingang Special Area in Shanghai is an excellent example of thinking creatively and constructively about the challenges of cross-border data flows. Good policy is an integral element of the successful uptake of AI and other emerging technologies. And that gets forgotten far too often at our peril.

          Ultimately, AI offers not only technological solutions to societal problems (if properly governed). It is a well-established principle of international relations that the more economically integrated states are, and the more they trade, the less likely they are to descend into primitive, kinetic conflicts. And it's quite possible that the imperative and incentives to share global data sets could have a similar effect on global affairs.

          If governments remain focused on using AI to address human-centric goals, the significant benefits of shared data sets could not only set us up for technological innovation, but also sufficiently bind us together in ways that make continued international cooperation the bedrock of that success.

          The author is a professor of Global Politics and Cybersecurity at University College London. The views don't necessarily reflect those of China Daily.

          If you have a specific expertise, or would like to share your thought about our stories, then send us your writings at opinion@chinadaily.com.cn, and comment@chinadaily.com.cn.

          Most Viewed in 24 Hours
          Top
          BACK TO THE TOP
          English
          Copyright 1994 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
          License for publishing multimedia online 0108263

          Registration Number: 130349
          FOLLOW US
          主站蜘蛛池模板: 久久免费观看归女高潮特黄| 精品国产综合一区二区三区| 国产资源精品中文字幕| 亚洲国产精品综合久久20| 四虎国产精品成人免费久久| 国内精品自产拍在线播放| 亚洲精品无码AV人在线观看国产| 啦啦啦www高清在线观看视频| 最近中文字幕国产精品| 在线免费不卡视频| 欧美有码在线观看| 亚洲黄日本午夜一区二区| 亚洲国产精品成人av网| 99久久亚洲综合精品成人网| 国产一区二区四区不卡| 777国产精品永久免费观看| 2021国产成人精品久久| 色国产视频| 毛片网站在线观看| 六十路老熟妇乱子伦视频| 无码人妻精品一区二| 老司机亚洲精品一区二区| а∨天堂一区中文字幕| 国内在线视频一区二区三区| 日韩A人毛片精品无人区乱码 | 日韩人妻少妇一区二区三区 | 性夜夜春夜夜爽夜夜免费视频| 人妻有码av中文字幕久久琪| 夜鲁夜鲁很鲁在线视频 视频| 久久青草精品A片狠狠来| 亚洲精品日韩中文字幕| 4hu44四虎www在线影院麻豆| 18禁亚洲一区二区三区| 国产成人无码午夜视频在线播放| 久久久久亚洲AV无码尤物| 亚洲精品国产男人的天堂| 真人无码作爱免费视频| 亚洲精品国产av成拍色拍个| 国产午夜91福利一区二区| 韩国三级+mp4| 国产69精品久久久久99尤物|