<tt id="6hsgl"><pre id="6hsgl"><pre id="6hsgl"></pre></pre></tt>
          <nav id="6hsgl"><th id="6hsgl"></th></nav>
          国产免费网站看v片元遮挡,一亚洲一区二区中文字幕,波多野结衣一区二区免费视频,天天色综网,久久综合给合久久狠狠狠,男人的天堂av一二三区,午夜福利看片在线观看,亚洲中文字幕在线无码一区二区
          Global EditionASIA 中文雙語Fran?ais
          China
          Home / China / Society

          Xi'an City Wall gets health checkup after heavy rains

          By Qin Feng in Xi'an and Wang Songsong | China Daily | Updated: 2025-11-07 09:14
          Share
          Share - WeChat

          Cultural relics protection authorities in Xi'an, Shaanxi province, are implementing comprehensive measures to protect the iconic Xi'an City Wall from heavy rains linked to climate change, particularly over the past few months.

          Since September, the province has experienced three prolonged rainy periods, with 87 monitoring stations recording more than 20 days of rainfall. The stations collectively recorded an average precipitation of 314 millimeters, 1.6 times higher than the normal level for this period. This marks the second-highest precipitation since 1961, trailing only 2021.

          The risks posed by heavy rainfall became clear five years ago. In August 2020, a 20-meter section of the protective masonry on the southern part of the Qin Prince Palace wall in Xi'an collapsed due to heavy rainfall. It was confirmed that only the recently restored outer layer was damaged, while the original Ming Dynasty (1368-1644) rammed-earth structure remained intact.

          "The primary cause of damage to the wall over the years has been water," said Gao Heng, head of the cultural heritage protection department of the Xi'an City Wall Management Committee.

          According to Gao, increased moisture leads to two main types of damage: surface deterioration and structural issues. Surface deterioration primarily involves the growth of moss and lichen in the brick joints due to a more humid microclimate. While this does not threaten the wall's overall structural integrity, the growth requires manual removal.

          A more significant concern is water seeping into cracks and reaching the wall's core, which is made of rammed earth. Once water infiltrates the rammed-earth structure, the soil's bearing capacity decreases, potentially leading to localized settlement or collapse.

          "This, in turn, triggers localized subsidence and collapse. These cracks and depressions then channel rainwater, accelerating infiltration and creating a self-reinforcing vicious cycle that continuously threatens the structural safety of the wall," Gao said.

          To address these problems, the committee has adopted a differentiated maintenance approach. Routine maintenance includes promptly sealing cracks to block water seepage pathways and addressing settlement by re-leveling surface bricks and replacing damaged ones in affected areas. Engineering measures are required when severe cracks or significant settlement appear. These involve more thorough solutions such as re-compacting loose, unconsolidated soil on the wall's summit to enhance its bearing capacity and prevent water seepage.

          A key drainage project, approved by the National Cultural Heritage Administration, is being implemented around the wall's foundation to divert rainwater.

          "Keeping water away from the wall's base is crucial to its long-term stability," Gao said.

          The committee has also introduced a "wall chief" system, assigning individuals to oversee specific sections for routine monitoring and the early reporting of issues.

          Technology plays a vital role in these efforts. Since 2018, a "digital cabin" system that integrates more than 3,000 sensors has been deployed to monitor settlement, crack displacement and other vital signs. Drones are deployed once every three months for aerial inspections. A four-color warning system — red, orange, yellow and green — assesses risks based on the severity and rate of change of any damage, allowing for targeted responses.

          In 2023, a full "CT health scan" of the 13.74-kilometer-long wall was conducted using ground-penetrating radar and high-resolution surface wave technology. It revealed more than 1,300 historical cavities and 800 areas of less compact soil within the wall.

          "These are not immediate dangers, but they are hidden risks we must monitor," Gao said.

          Collaboration is another cornerstone of the preservation work. Gao said the local meteorological bureau provides specialized weather forecasts and early warnings, while universities such as Northwest University and a multidisciplinary committee of experts offer academic and technical support.

          Top
          BACK TO THE TOP
          English
          Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
          License for publishing multimedia online 0108263

          Registration Number: 130349
          FOLLOW US
           
          主站蜘蛛池模板: 苍井空无码丰满尖叫高潮| 丁香五月亚洲综合在线国内自拍| 日韩伦理片| 亚洲欧洲∨国产一区二区三区| 国产精品自在自线视频| 最近最新中文字幕视频| 亚洲成av一区二区三区| 国产一码二码三码区别| 1精品啪国产在线观看免费牛牛| 又爽又黄又无遮挡的视频| 欧美性色欧美a在线播放| 国产一级区二级区三级区| 激情动态图亚洲区域激情| 日本韩无专砖码高清观看| 亚洲久悠悠色悠在线播放| 国产女人18毛片水真多1| 人妻综合专区第一页| 日本亚洲成高清一区二区三区| 日韩有码av中文字幕| 国产成人AV在线播放不卡| 国产成人精品一区二区无| 国产精品无码av一区二区三区| 亚洲日本乱码熟妇色精品| 亚洲精品电影院| 999精品色在线播放| 吃奶还摸下面动态图gif| 色系免费一区二区三区| 亚洲男女羞羞无遮挡久久丫| 人妻日韩人妻中文字幕| 中文字幕日韩有码国产| 四虎国产精品永久入口| 亚洲精品综合久中文字幕| 国产伦理自拍视频在线| 国产成人亚洲精品成人区| 欧美色欧美亚洲高清在线观看| 韩国 日本 亚洲 国产 不卡| 国产成人免费一区二区三区| 亚洲婷婷综合色高清在线| 日本做受高潮好舒服视频| 伊人色在线视频| 亚洲ΑV久久久噜噜噜噜噜|