<tt id="6hsgl"><pre id="6hsgl"><pre id="6hsgl"></pre></pre></tt>
          <nav id="6hsgl"><th id="6hsgl"></th></nav>
          国产免费网站看v片元遮挡,一亚洲一区二区中文字幕,波多野结衣一区二区免费视频,天天色综网,久久综合给合久久狠狠狠,男人的天堂av一二三区,午夜福利看片在线观看,亚洲中文字幕在线无码一区二区
          USEUROPEAFRICAASIA 中文雙語Fran?ais
          World
          Home / World / Kaleidoscope

          Forecasting sun storm havoc

          By Kenneth Chang | The New York Times | Updated: 2013-03-31 08:19

           Forecasting sun storm havoc

          Auroras appeared over Whitehorse, Yukon, in September 2012, caused by a coronal mass ejection on the sun, above. Nasa, via Associated Press David Cartier, SR.

          Forecasting sun storm havoc

          Magnetic loops on the sun, captured by NASA's Solar Dynamics Observatory on July 8, 2012. NASA / SDO / Goddard Space Flight Center

          Forecasting sun storm havoc

          In 1859, the Sun erupted, and on Earth wires shot off sparks that shocked telegraph operators and set their paper on fire.

          It was the biggest geomagnetic storm in recorded history. The Sun hurled billions of metric tons of electrons and protons whizzing toward Earth, and when those particles slammed into the planet's magnetic field they created spectacular auroras of red, green and purple in the night skies - along with powerful currents of electricity that flowed out of the ground into the wires, overloading the circuits.

          If such a storm struck in the 21st century, some telecommunications satellites high above Earth would be disabled. GPS signals would be scrambled. And electrical grids could fail, plunging a continent into darkness.

          Scientists say it is impossible to predict when the next monster solar storm will erupt - and whether Earth will lie in its path. What they do know is that with more sunspots come more storms, and this autumn the Sun is set to reach the crest of its 11-year sunspot cycle.

          Sunspots are regions of turbulent magnetic fields where solar flares originate. Their ebb and flow have been observed for centuries, but only in the past few decades have solar scientists figured out that magnetic fields within the spots can unleash the bright bursts of light called solar flares and the giant eruptions of charged particles known as coronal mass ejections.

          Experts are divided on the earthly consequences of a cataclysmic solar eruption, known as a Carrington event, for the British amateur astronomer who documented the 1859 storm.

          A continentwide blackout would affect many millions of people, "but it's manageable," said John Moura of the North American Electric Reliability Corporation, a nonprofit group founded by utilities to help manage the power grid. Most of the grid could be brought back online within a week or so, he said.

          Others are more pessimistic. They worry that a huge and well-aimed eruption from the Sun would cause not only the lights to go out, but would also damage transformers and other critical components of the grid. Some places could be without power for months, and "chronic shortages for multiple years are possible," according to the National Research Council, the leading science research group for the United States.

          Still, this sunspot cycle has been quieter than most. And even if the Sun unleashes a huge burst, as it did last July, the odds are that it will head harmlessly in another direction into the solar system. Only rarely does a giant solar blast fly directly at Earth.

          Yet just as a hurricane-fueled surge hitting New York City at high tide during a full moon is rare, rare is not impossible.

          "There's always the chance of a big storm, and the potential consequences of a big storm has everyone on the edge of their seats," said William Murtagh, program coordinator for the Space Weather Prediction Center, part of the National Oceanic and Atmospheric Administration.

          The most studied, unambiguous example of the Sun's ability to snarl power grids occurred on March 13, 1989, in Quebec. In the early-morning hours, a solar storm generated currents in the transmission wires, tripping circuit breakers. Within minutes, a blackout stretched across the province. Power was restored later that day.

          Canada was hit again a few months later, when another solar storm was blamed for computers shutting down at the Toronto Stock Exchange.

          Mr. Moura's organization put out a report last year saying that utilities would have enough warning to disconnect the grid and protect the transformers.

          The dangers will not go away after the solar maximum - the period of heaviest solar weather - has passed. Even when quiet, with few sunspots, the Sun can still produce a giant eruption.

          Solar flares, traveling at the speed of light, arrive at Earth in less than 8.5 minutes and can drown out some radio communications. But it is the coronal mass ejections - in which billions of metric tons of electrons and protons are disgorged and accelerate to more than a million and a half kilometers per hour - that cause more worry.

          The ejected particles, which generally take two or three days to travel the 150 million kilometers from the Sun to Earth, never hit the surface; the planet's magnetic field pushes them aside.

          But then they are trapped in the field. The back-and-forth sloshing generates new magnetic fields, mostly over the night side, and they, in turn, induce electrical currents in the ground. Those currents surge out of the ground and into the electrical transmission lines.

          The Sun is shooting off, on average, a few coronal mass ejections a day, including one on March 15 that made a direct hit on Earth, generating picturesque nighttime auroras as far south as Colorado but causing no noticeable harm.

          NASA's Sun-watching spacecraft keep track of the sunspots, and they can provide some warning of which regions look likely to erupt.

          The two hemispheres of the Sun are out of sync. The northern hemisphere has been ahead of the curve, producing a large number of sunspots in late 2011 and has quieted since then, while the southern hemisphere has remained fairly quiet throughout.

          Most solar scientists expect the southern hemisphere to perk up, and the number of sunspots to increase again, with the solar maximum arriving in the fall. Such double-peak patterns have appeared in some earlier solar cycles.

          "I believe I can say with strong confidence there will be a second peak in 2013," said Douglas Biesecker, a physicist at the Space Weather Prediction Center and the chairman of a panel that issued predictions about the solar cycle.

          John Kappenman, an electrical engineer who owns Storm Analysis Consultants, has been warning of potential catastrophe. "In a sense," he said, "we're playing Russian roulette with the Sun."

          The New York Times

          Forecasting sun storm havoc

           

          Most Viewed in 24 Hours
          Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
          License for publishing multimedia online 0108263

          Registration Number: 130349
          FOLLOW US
          主站蜘蛛池模板: 亚洲色欲在线播放一区二区三区| 中文无码日韩欧免费视频| 美女精品黄色淫秽片网站| 一区二区三区av天堂| 国产精品午睡沙发系列| 亚洲精品中文幕一区二区| 欧美孕妇变态重口另类| 国产精品亚韩精品无码a在线| 少妇人妻综合久久中文| 国产一区二区亚洲一区二区三区| 欧洲无码一区二区三区在线观看| 国产精品熟女一区二区不卡| 99久久精品国产一区二区蜜芽| 亚洲 日本 欧洲 欧美 视频 | 欧美激情 亚洲 在线| 色就色偷拍综合一二三区| 中文字幕在线视频不卡一区二区| 亚洲高清免费在线观看| 色综合色综合久久综合频道| 99热久久这里只有精品| 日本熟妇色xxxxx| 激情 自拍 另类 亚洲| 97人妻中文字幕总站| 国产精品乱码久久久久久小说| 熟妇人妻系列aⅴ无码专区友真希| 色猫咪av在线网址| 日本亚洲欧洲无免费码在线| 国产av一区二区精品久久凹凸| 久久人与动人物a级毛片| 精品自在拍精选久久| 97精品尹人久久大香线蕉| 中文字幕日韩有码av| 国产精品二区中文字幕| 国产视频一区二区三区视频| 99久久久国产精品消防器材| 深夜视频国产在线观看| 亚洲av二区国产精品| 亚洲精品国产自在现线最新| 久久夜色撩人精品国产av| 国产一级精品毛片基地| 国产精品国产高清国产av|