<tt id="6hsgl"><pre id="6hsgl"><pre id="6hsgl"></pre></pre></tt>
          <nav id="6hsgl"><th id="6hsgl"></th></nav>
          国产免费网站看v片元遮挡,一亚洲一区二区中文字幕,波多野结衣一区二区免费视频,天天色综网,久久综合给合久久狠狠狠,男人的天堂av一二三区,午夜福利看片在线观看,亚洲中文字幕在线无码一区二区
          Global EditionASIA 中文雙語Fran?ais
          China
          Home / China / Innovation

          Chinese scientists make quantum leap in computing

          Xinhua | Updated: 2017-05-03 10:22
          Share
          Share - WeChat

          SHANGHAI -- Chinese scientists have built the world's first quantum computing machine that goes far beyond the early classical -- or conventional -- computers, paving the way to the ultimate realization of quantum computing.

          Scientists announced their achievement at a press conference in the Shanghai Institute for Advanced Studies of University of Science and Technology of China on Wednesday.

          Scientists believe quantum computing could in some ways dwarf the processing power of today's supercomputers. One analogy to explain the concept of quantum computing is that it is like being able to read all the books in a library at the same time, whereas conventional computing is like having to read them one after another.

          Pan Jianwei, an academician of the Chinese Academy of Sciences and a leading quantum physicist, said quantum computing exploits the fundamental quantum superposition principle to enable ultra-fast parallel calculation and simulation capabilities.

          In normal silicon computer chips, data is rendered in one of two states: 0 or 1. However, in quantum computers, data could exist in both states simultaneously, holding exponentially more information.

          The computing power of a quantum computer grows exponentially with the number of quantum bits that can be manipulated. This could effectively solve large-scale computation problems that are beyond the ability of current classical computers, Pan said.

          For example, a quantum computer with 50 quantum bits would be more powerful in solving quantum sampling problems than today's fastest supercomputer, Sunway TaihuLight, installed in the National Supercomputing Center of China.

          Due to the enormous potential of quantum computing, Europe and the United States are actively collaborating in their research. High-tech companies, such as Google, Microsoft and IBM, also have massive interests in quantum computing research.

          The research team led by Pan is exploring three technical routes: systems based on single photons, ultra-cold atoms and superconducting circuits.

          Recently, Pan Jianwei and his colleagues -- Lu Chaoyang and Zhu Xiaobo, of the University of Science and Technology of China, and Wang Haohua, of Zhejiang University -- set two international records in quantum control of the maximal numbers of entangled photonic quantum bits and entangled superconducting quantum bits.

          Pan explained that manipulation of multi-particle entanglement is the core of quantum computing technology and has been the focus of international competition in quantum computing research.

          In the photonic system, his team has achieved the first 5, 6, 8 and 10 entangled photons in the world and is at the forefront of global developments.

          Pan said quantum computers could, in principle, solve certain problems faster than classical computers. Despite substantial progress in the past two decades, building quantum machines that can actually outperform classical computers in some specific tasks -- an important milestone termed "quantum supremacy" -- remains challenging.

          In the quest for quantum supremacy, Boson sampling, an intermediate (that is, non-universal) quantum computer model, has received considerable attention, as it requires fewer physical resources than building universal optical quantum computers, Pan said.

          Last year, Pan and Lu Chaoyang developed the world's best single photon source based on semiconductor quantum dots. Now, they are using the high-performance single photon source and electronically programmable photonic circuit to build a multi-photon quantum computing prototype to run the Boson sampling task.

          The test results show the sampling rate of this prototype is at least 24,000 times faster than international counterparts, according to Pan's team.

          At the same time, the prototype quantum computing machine is 10 to 100 times faster than the first electronic computer, ENIAC, and the first transistor computer, TRADIC, in running the classical algorithm, Pan said.

          It is the first quantum computing machine based on single photons that goes beyond the early classical computer, and ultimately paves the way to a quantum computer that can beat classical computers. This achievement was published online in the latest issue of Nature Photonics this week.

          In the superconducting quantum circuit system, a research team from Google, NASA and the University of California at Santa Barbara announced a high-precision manipulation of 9 superconducting quantum bits in 2015.

          Now the Chinese team led by Pan, Zhu Xiaobo and Wang Haohua have broken that record. They independently developed a superconducting quantum circuit containing 10 superconducting quantum bits and successfully entangled the 10 quantum bits through a global quantum operation.

          Chinese scientists aim to realize manipulation of 20 entangled photons by the end of this year, and will try to design and manipulate 20 superconducting quantum bits. They also plan to launch a quantum cloud computing platform by the end of this year.

          Top
          BACK TO THE TOP
          English
          Copyright 1995 - . All rights reserved. The content (including but not limited to text, photo, multimedia information, etc) published in this site belongs to China Daily Information Co (CDIC). Without written authorization from CDIC, such content shall not be republished or used in any form. Note: Browsers with 1024*768 or higher resolution are suggested for this site.
          License for publishing multimedia online 0108263

          Registration Number: 130349
          FOLLOW US
           
          主站蜘蛛池模板: 在线观看中文字幕国产码| 亚洲无线码一区在线观看| av在线播放观看免费| 日韩av日韩av在线| 国产成人精品久久一区二| 黑人猛精品一区二区三区| 国产精品中文第一字幕| 18禁超污无遮挡无码网址| 午夜免费福利小电影| 亚洲综合专区| 亚洲美女少妇偷拍萌白酱| 亚洲av永久无码精品秋霞电影影院| 在线 欧美 中文 亚洲 精品| 久久毛片少妇高潮| 男人深夜影院无码观看| 青青青爽在线视频观看| 亚洲av色在线观看网站| 亚洲一区二区三区在线激情| 黑人玩弄人妻中文在线| 精品少妇人妻av无码专区| 人妻饥渴偷公乱中文字幕| 精品人妻中文av一区二区三区| 另类专区一区二区三区| 亚洲一级毛片免费观看| 亚洲嫩模喷白浆在线观看| 国产成本人片无码免费2020| 亚洲国产精品综合久久网各| 看亚洲黄色不在线网占| 欧美成年黄网站色视频| 国产精品自在欧美一区| 国产精品高清国产三级囯产AV| 高清无码爆乳潮喷在线观看| 欧美区在线| 成人国产精品一区二区网站公司| 国产女人乱人伦精品一区二区| 国产成人综合亚洲第一区| 亚在线观看免费视频入口| 国产又爽又黄的精品视频| 日韩欧美一卡2卡3卡4卡无卡免费2020 | 日韩av在线一区二区三区| 国产精品无码无卡在线播放|